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Abstract

Global stability of field-reversed configuration (FRC) plasmas has been stud-
ied using a simple rigid body model in the parameter space of s (ratio of
separatrix radius to average ion gyro-radius) and plasma elongation F (ratio
of separatrix length to separatrix diameter). Tilt stability is predicted, inde-
pendent of s, for FRC’s with low F (oblate), while the tilt stability of FRC’s
with large F (prolate) depends on s/F. It is found that plasma rotation due
to ion diamagnetic drift can stabilize the tilt mode when s/F < 1.7. The
so-called collisionless ion gyro-viscosity also is identified to stabilize tilt when
s/E < 2.2. Combining these two effects, the stability regime broadens to
s/E < 2.8, consistent with previously developed theories. A small additional
rotation (e.g. a Mach number of 0.2) can improve tilt stability significantly
at large /. A similar approach is taken to study the physics of the shift sta-
bility. It is found that radial shift is unstable when F < 1 while axial shift is
unstable when F > 1. However, unlike tilt stability, gyro-viscosity has little

effect on shift stability.
PACS numbers: 52.55.Hc, 52.35.Py
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I. INTRODUCTION

The field-reversed configuration (FRC) is a unique toroidal magnetic confinement scheme
in that there is no appreciable toroidal field. The plasma is confined purely by a poloidal
field, which is produced by a toroidal plasma current. Thus the current flows in the direc-
tion perpendicular to the local magnetic field, sustaining maximum possible plasma beta
close to unity. On the other hand, due to the lack of a center conductor and a confining
toroidal field, FRC’s are predicted to be unstable to many global magnetohydrodynamic
(MHD) modes. However, FRC plasmas formed in #-pinch devices exhibit remarkable global
stability! with a few exceptions?. Much theoretical effort has been made to reveal stabi-
lizing mechanisms of the predicted instabilities (tilt mode in particular), including effects

from plasma rotation® ®, two-fluid®, ion finite Larmor radius (FLR)® ', energetic ions'!'?,

13715 Although agreement between theory and experiment has improved

and current profile
over the years, few concrete physical pictures of stabilizing mechanisms have been given. In
this paper, a simple equation of motion for each global mode is formulated and analyzed
using a rigid body model of the FRC plasma. The strategy taken here is to elucidate semi-
quantitatively the essential physics for stabilizing mechanisms by using the simplest possible
equations. Although the deduced marginal stability condition may not be sufficient due to
the limited degrees of freedom of rigid body motion, the analyses described below should
shed new light in understanding the fundamental physics of FRC stability.

After a brief description of FRC models in Sec. I, tilt stability is analyzed in detail
in Sec. III, including effects from J x B torque, plasma rotation due to ion diamagnetic

drift, ion gyro-viscosity, and E x B rotation. In Sec. 1V, axial and radial shift stability is

analyzed, followed by discussions and conclusions.



II. MODELS OF FRC PLASMAS
A. Solovev model of FRC plasmas

The global modes of a plasma are often destabilized by the 3 x B force, which is usually
a strong function of plasma shape, e.g., plasma elongation defined by ratio of separatrix
length to separatrix diameter. Here j is the internal current density of the plasma and
B is the vacuum field produced by external coil currents. To quantify this force, an FRC
equilibrium solution with known vacuum field is needed. The simplest analytic model of
FRC equilibrium with arbitrary elongation is the Solovev’s solution'® given by
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where v is the poloidal flux function, Ry is the radius of magnetic axis, and Z is defined

in Fig. 1(a). As is also obvious from Fig. 1(a), the length and radius of FRC separatrix are
L =2v27y and R, = /2Ry, respectively, resulting in an elongation £ = L/(2Rs) = Zy/Ro.
The trapped flux 2wy is related to the magnetic field at the edge By = Bz(R = Rs, Z = 0)
by 2mipg = 7 BoR*. When E = 1, Solovev’s solution reduces to the well-known spherical
Hill’s vortex!'” with an analytic external solution. The vacuum solution for arbitrary £ is
obtained numerically by placing coils around the plasma. The coil currents are calculated
by matching flux values at the separatrix (see Appendix for detail). One such example is
shown in Fig. 1(a) where the internal (external) flux is represented by solid (dotted) lines.

The vacuum flux together with coil locations is separately shown in Fig. 1(b).

B. Cylindrical Rigid Body Model

In order to elucidate the essential physics of FRC global stability, we use an even simpler
cylindrical rigid body model [rectangular box in Fig. 1(a)] to analyze the motion of each
mode. The cylinder is filled with a plasma of uniform density n, radius R;, and length
27y = ER,/\/2. As a result, the moments of inertia of the cylindrical plasma with respect

to each axis (see Fig. 2) are given by
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where Mol = V21 R2Enm; is the total mass (m; = ion mass).

One question which could arise is whether the global modes in this model are internal or
external. An apparent answer is that they are external. However, we note that qualitatively
they can be “internal” if the modeled region is smaller than the separatrix, i.e., R < R;.
In this respect, the nature of the analyzed modes can include internal behavior, as will be
discussed later. Below, the analysis of the tilt and shift global modes using this simple model

is described.

III. TILT STABILITY

The tilt instability has been regarded as the most dangerous in FRC’s, although it has
not been observed consistently in the traditional #-pinch formation scheme. Theoretically,
it has been shown to be unstable in plasmas with large £ due to the destabilizing 3 x B
force, but it can be stabilized by many non-MHD effects. In this section, the simplest
possible model is constructed to reveal the stabilizing physical mechanisms of this mode.
The simplest model relating the j x B force to the decay index ngecay (= —(R/Bz)0Bz/0R)
of the external field produced by the coils is the current ring model used in the study of
spheromak tilt stability'®. However, this model does not provide a link between ngecay and
plasma elongation E. which is important in FRC tilt stability and will be dealt with in
this paper. Instead, we use the Solovev model to calculate directly the tilt stabilizing or

destabilizing 3 x B force as a function of F.

A.J x B Torque

In FRC’s, the internal current flows in the § (7 in Fig. 2) direction and is de-
noted by j; = (—Jjgsinb,jscosd,0). This j, interacts with the vacuum field By =
[Br(R,Z)cos 0, Br(R, Z)sin 8, Bz (R, 7)], resulting in a torque “density” n(r) =r X (J, X



By ), where 7 is the position vector, (Rcos @, Rsin 6, 7). Before tilting, however, the total
torque N = [ ndV integrated over the whole plasma volume is zero. After the plasma tilts
a small angle, a responding torque IN; arises either to accelerate the tilting or to restore
the plasma to its original equilibrium, depending on the vacuum field provided for each
plasma shape (elongation). Without losing generality, this responding torque N; = [ ndV
is calculated as a first order perturbation in tilting angle 8y with respect to the X axis.

Instead of tilting the plasma an angle #x with respect to the stationary background
vacuum field, one simple way to calculate the perturbed torque m; is to use the plasma
frame of reference and to tilt the background vacuum field an angle —fx. In the plasma
frame, the vectors # and j, are unperturbed, therefore, n; can be evaluated simply from
the perturbed vacuum field By, i.e., my = X (J; X By1). To first order in fx, this n, is
the same both in the plasma frame and the vacuum field frame.

The vacuum field perturbation at r comes from two effects: (1) direction change due to
tilting, and (2) magnitude change due to the fact that a different field originally located at

r' = (R cosf, R sinf, Z') moves into the current location = as a result of tilting:

Br(R,Z)cos 6 Br(R',Z") cos 0
Bv = | Br(R,Z)sin0 | = | Br(R',Z")sinfcosOx — Bz(R', Z')sin0x
Bz(R,7) Bz(R',7Z")cosx + Br(R', 7Z') sin §sin x

Here R’ and Z’ are related to R and Z by R' ~ R+ 0xZsinf and 7' ~ Z — OxRsin0.
Therefore,
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where B = Bpr or Bz. Then the first order change in the vacuum field is given by
sin § cos 0 (Z% — R%)

By =0x | sin?0 (2958 — R%52) — By
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With use of



_ 13(RBr) 9Bz dBr OB
VeB=32""3r Tz =% a7 = or

the perturbed torque can be calculated and simplified to
—RBz(1 — Ndecay) sin® 0
ny = Ox79 RBz(1 — ndecay) sin @ cos 9 |
0

where Ngecay i1s a generalized decay index including effects from the 3 x B force off the

mid-plane (7 # 0),

ok  R!0OR
Clearly, the total torque N; = [ [ [ niRdZdRdf does not have Y nor Z components while

R |0B Z 0
Ndecay = _B_Z [—Z — _—(QRBR + ZBz)] .

the X component is given by Nix = —7wlx [ [ 7sR*Bz(1 — ndecay)dZdR. By using j; =

BoR(4 4+ 1/E?*)/uo R? in the Solovev’s model, Nyx can be written as

2
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Nix = WQXR::M_Z (4 + ﬁ) Xtilts  Xtilt = // Z(R5BO - Y) dZdR, (1)

where the non-dimensional parameter 1, can be calculated numerically as a function of F,
as plotted in Fig. 3. This y¢;c can be fit to 0.02E+0.342—0.225/ E+0.0425/ E* —0.00329/ E>.
When a small 6y is introduced, the responding torque Niy has the same expression as Ny x
but with #x replaced by 6y.

Figure 4 shows the normalized 3 x B torque as a function of K. It can be seen that if
E < 0.5, the § x B torque is negative. In other words, it restores the plasma toward its
equilibrium position due to a strong mirror field. When £ 2 0.5, the FRC is tilt unstable,
consistent with previous MHD studies!®. We note that the force from the plasma pressure
gradient should not contribute to the tilting torque since it is balanced by the unperturbed

J X Biy during tilting, where By is the field produced by the internal current.

B. Stabilizing effect from plasma rotation

It is well known that plasma rotation in the # direction can help stabilize the tilt mode® >,

In this subsection, the simplest possible equations using the rigid body model are used to

6



study this effect. The three-axis rigid body rotation is governed by Euler’s equations?,

IxOx — (Iy — I)0y0; = Ny

Iyby — (I; — Ix)0z0x = Ny

1,6, — (Ix — [Y)éXéY = Nz,
which can be simplified since Ix = Iy = I, Nx/0x = Ny /8y = N, and 0, = const. = Q
with no net driving torque in the Z direction, i.e.. Nz = 0. Then the reduced equations are
[0y — (I — 1)y — NOx =0 (2)
10y + (I — I,)Q0x — Ny = 0. (3)

Taking the derivative of Eq. (3) and substituting fy from Eq. (2), we have a fourth order

differential equation for fy,
120 4+ (b* — 2IN)fy + N*0x = 0,

where b = (I — I7)Q2. Assuming that the solutions have the form 0x = Oxgexp(—iwt), a

fourth order algebraic equation for w is obtained,
I’ — (62 — 2[N)w2 + N? =0,

which yields a solution of w? = (b* —2I N +/b* — 41 Nb?)/2I*. The necessary and sufficient

condition for w to be real is
(I —I7)0]* > 4IN, (4)

which provides the minimum plasma rotation to stabilize the tilt, as plotted in Fig. 5.
A stable region appears at large elongation. This can be understood due to the fact that
rotational stabilization becomes more effective when the difference in the moments of inertia
between the tilting axis and the Z axis becomes larger.

In FRC plasmas, a large ion pressure gradient Vp; exists due to a large plasma beta

dominated by ion beta. An inherent plasma rotation arises from the ion diamagnetic drift
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since ions carry most of the plasma momentum. The magnitude of this naturally occurring

rotation can be estimated as

(5)

Mdiamag = = ~ e
Vthi enthhi AR S

where Ap is the radial scale length of p;, vy 1s the ion thermal velocity, and s is defined as
the ratio of R, to average ion gyro-radius. [This s is approximately equivalent to S* defined
as Rs/(¢/wpi) and roughly four times larger than s = f}% RAR/Rsp;.]

The stability condition can be determined in the parameter space of s and F using this
diamagnetic rotation, as shown in Fig. 6 where Ap = R; — Ry is assumed. A stable window
appears at low s and large £ (s/F < 1.7), consistent with a previous study® where an
ion diamagnetic rotation was introduced to a two-fluid model. For a given F. the plasma
rotates faster for smaller s due to ion diamagnetic drift, while for a given s the rotational

stabilization becomes more effective with larger F as shown in Fig. 5.

C. Stabilizing effect from ion gyro-viscosity

The above analysis of FRC stability is based on a rigid body model, which is appropriate
for external tilting. However, as pointed out in Sec. IIB, this approach also models stability
properties of internal tilting since the modeled region can be smaller than the whole plasma
region, i.e., any inner part of the plasma. When only an inner part of the plasma tilts, the
internal structure or profiles are deformed. If the typical ion gyro-radius is the same order
as or larger than the spatial scale of this deformation, responding forces can arise from ion
kinetic effects, in addition to the MHD force dealt with in Sec. ITA. The stabilizing effects of

10 in various schemes, but little

ion kinetic motion have been considered by many authors®"
physical insight into the underlying mechanisms has been given. Below, we approach this
problem with minimum mathematical complications in an attempt to elucidate the physics
but at the acknowledged expense of obtaining only semi-quantitative results.

The so-called ion gyro-viscosity®!' is one particular kinetic effect from ion gyro-motion.

If there are spatial variations in force, such as electric field force, ions tend to experience



the variations over larger areas than electrons. If these variations are linear in space, ions
experience a larger force during one half of their cyclotron period and a smaller force during
the other half. As a result, the average force experienced can be approximated by the force
at the guiding center, resulting in a null kinetic effect. However, when the spatial variation is
more than linear, such as quadratic, the guiding center approximation fails due to incomplete
cancellation between forces during one gyro motion. In this case, in addition to the force at
the guiding center, a correction proportional to the second derivative (or curvature) of the
spatial variation is needed. When the force is perpendicular to the local magnetic field, the
correction can be expressed in a form proportional to the curvature of the corresponding
perpendicular flow, resulting in an effective viscosity often referred to as ion gyro-viscosity,
although it arises without collisions.

In FRC plasmas, the second radial derivative (or radial curvature) of the toroidal flow
due to ion diamagnetic drift is not negligible especially in the case of a hollow current pro-
file since ions carry a large portion of the plasma current perpendicular to the local field.
Therefore, a correction force proportional to 9?V;/dR? arises in the radial direction, pointing
inward. (Confusion could arise here since the corresponding force for diamagnetic flow is
the ion pressure gradient force which appears only in the fluid equations, in contrast with
an electric field which can be felt by each gyrating particle. However, the complete Bra-
ginskii treatment?? does give rise to such viscosity terms proportional to pressure curvature
regardless of the nature of the corresponding force.)

An intuitive cartoon of the gyro-viscous force before tilting is shown in Fig. 7(a). They
balance each other, resulting in a null tilting torque. However, when only an inner portion of
the FRC plasma tilts, one part of the plasma is compressed while another is decompressed,
resulting in changes in the gyro-viscous force, as indicated in Fig. 7(b). These perturbations
form a restoring torque against tilt. This restoring torque can be divided into two parts:
one from the sides of the FRC plasma and another from the ends, and they can be evaluated
separately.

A more quantitative expression for the viscosity tensor in the strong field limit with non-



uniform Vj has been given by Braginskii®? ,

210 OVy Vs 213 8\/9‘ oVy
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where 1o = 0.96nT;7; and n3 = nT;/2Q; (7; is ion collision time and €; is the ion cyclotron

frequency). Then the ion viscous force in the R direction is given by

Fro— aﬁRR aﬂ'R@ aﬂ'RZ _g@ 82% 82%+g£82%+2 82%
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where the last term is small due to the nature of rigid body motion, i.e., V4 changes only
linearly in the Z direction. The first term is due to the effect of so-called magnetic pumping
or parallel viscosity, but it contributes only a force parallel to the tilting axis. Thus no net
torque exists. The second and third terms are forces due to the gyro-viscosity mentioned
above. The relative strength of this force to the ion pressure gradient Vp; is found to
be (R?/2A%)(1/s*). The increased importance for smaller s is consistent with physical
intuition.

Similar expressions for the gyro-viscous force acting at the ends of FRC plasmas can be
found with Az denoting axial scales of Vj near the ends. For a small tilting angle 0y, Ag
and Ay change by dp = ZfOxsinf and dy = ROy sind, respectively. Then the perturbed

forces are

2A2 O0xnT; Z R 2A2
Py = 35Rn3X—§sm9 (1 + R) _ 3t 20 ey (1 + R)

) 9R? 252 AR 9R?
Ve . 2A% 30xnT; RR? ., 2A%
FlZ:?)(SanA—%SIHG(l—I— oR2 = 05 AL sin“ g1+ oR )

where Eq. (5) has been used. Assuming Fjx acts on the outer portion of the plasma with
thickness Agr, and Fjz acts on each end of the plasma with thickness Az, the restoring

torque can be calculated as

ZO_AZ 2 AR RS—AR 2
Nov=2 """ [T (Fix2)R.d0az g (1 - ) w2 [0 [T(R R R0dRA
0 0 5 0 0

OxnT;R> 2 9 £2 Zo—-Ay 72
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52 0 2 9 0 A}
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If Ngy is larger than the j x B torque, Nj.p from Eq.(1), the FRC plasma is tilt
stable. Figure 8 shows the stability diagram again in parameter space s and FE, where
fr=(Rs — Ro)/Rs and fz = Efr are used. A stable window appears at low s and large
E (s/E < 2.2), similar to the case of stabilization due to diamagnetic rotation. This trend
is consistent with previous analysis”™?, which employed the more thorough energy principle
but did not give a detailed physical picture. Also plotted in Fig. 8 are contributions from
the restoring torque, from the end (dashed line) and from the side (dash-dot line) of the
FRC plasmas shown in Fig. 7. The increased stability at low s and large F is because Vj
becomes larger at small s [Eq.(5)] and because the restoring torque from the side becomes

more effective (due to larger arm) with larger E.

D. Tilt stability with plasma rotation and ion gyro-viscosity

Now we can examine FRC tilt stability combining the effects of plasma rotation and ion
gyro-viscosity. We define the following dimensionless parameters, each of which represents
the contribution from a different effect:

Koo — EB; (1 —2E%/3)?
V2 1+2E2/3

P 4) )

R 1
Kyjwp =8 (4 + ﬁ) Xtilt-

Kaov = 383:f#

Then the stability condition can be deduced from Eq.(4) with an N which includes con-

tributions from both the 5 x B force [Eq.(1)] and the gyro-viscosity force [Eq.(6)], written
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as
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where M is a rotational Mach number in addition to the rotation due to ion diamagnetic

drift.

If M = 0, the stability condition can be reduced to

2 [(rot + [(GV
oN e
frKixB

which is plotted in Fig. 9, where the stability window expands to s/E S 2.8. If M # 0, i.e.,

S

there is an additional rotation due to E x B drift, then generally the stability improves as
shown in Fig. 10. A small additional rotation (such as M = 0.2) can stabilize tilt significantly

at large F.

IV. SHIFT STABILITY

Similar approaches can be taken to study the other two types of rigid body motion of
an FRC plasma: axial shift and radial shift. The calculations are much simpler since they
are planar motions. Contributions from both 3 x B and ion gyro-viscosity are considered.

When the plasma shifts in the axial (Z) direction by £z, the perturbed j x B force in

the Z direction is given by Fiz = &7 [ js0Bz/ORdV . Then the equation of motion is

R? 0By
27 17dR
3B, OR ’

. B? 1
Méy =2né R — (4 + —2) Xshift;  Xshift = //
Ho L

where the non-dimensional parameter yqnie can be explicitly calculated as a function of
and fit to —0.0132 — 0.168/E + 0.259/E? — 0.0917/E® + 0.0104/ E* (see Fig. 3).

Figure 11(a) shows the normalized j x B force as a function of E. If ' S 1, the axial

shift is stable due to a restoring § x B force. When E 2 1, the FRC is unstable to the axial
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shift mode. When only an inner part of the FRC plasma shifts axially, the ion gyro-viscosity

will provide a restoring force in the Z direction as in the tilt stability,

nTzRS 1— 2
Fav = 36, ( ?{CR) 7
S Iz

where the perturbed force is assumed to be active only at both ends of the plasma with

a thickness Az. Then the stability condition is obtained by setting the gyro-viscous force
equal to the j x B force. Figure 11(b) shows a stability diagram in the parameter space of
s and E. Unlike the case of tilt stability, gyro-viscosity has little effect on the axial shift
stability except for in very small s regimes.

A very similar analysis can be applied to a small radial shift £x in the X direction. The

perturbed 3 x B force in the X direction is given by

aBZ .2 BO2 1
5h sin” 0dV = —WfXRsﬁ (4 + ﬁ) \shift-

Fix = —/ije

As shown in Fig. 12(a), the radial shift stability window is reversed compared to axial shift.

The stabilizing ion gyro-viscous force,

 3néx nTiR, V2fz 2% IR
o e () ) 08,

is found to have little effect in the radial shift case, as shown in Fig. 12(b).

V. DISCUSSIONS AND CONCLUSIONS

Despite the very simple models used in the present studies, much physical insight has been
gained regarding global stability of FRC plasmas. Tilt stability is predicted, independent
of s, for FRC’s with low E (oblate), while tilt stability of FRC’s with large F (prolate)
depends on s/ FE. It is found that plasma rotation due to ion diamagnetic drift can stabilize
the tilt mode when s/E < 1.7. The so-called collisionless ion gyro-viscosity also is identified
to stabilize tilt when s/F < 2.2. Combining these two effects, the stability regime broadens
tos/E S 2.8, consistent with existing theories. A small additional rotation (such as a Mach

number of 0.2) can improve tilt stability significantly at large F. A similar approach is taken
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to study the physics of shift stability. It is found that radial shift is unstable when £ < 1
while axial shift is unstable when £ > 1. However, unlike the tilt stability, gyro-viscosity
has little effect on the shift stability.

In an attempt to compare with experiments, Figure 13 plots the s — E tilt stability
diagram together with existing experimental observations?* 2" in #-pinch devices. Without
FE x B rotation, some experimental data are outside the stable regime. But with a certain
level of £ x B rotation, all the data can be included in the stable regime, although a
consistent F x B rotation has not been experimentally established in these devices.

Of course, one should bear in mind that the above results are only semi-quantitative.
Also likely is that the stability windows shrink when non-rigid-body motions are taken into
account. A recent study??® shows that parallel viscosity due to both collisions or collisionless
pitch-angle scattering can smooth out variations along the field line thus making the motion
more rigid-body-like. On the other hand, the omitted effects of plasma compressibility (in-
cluding both thermal and magnetic)'® and sheared flows®® are likely to broaden the stability
window. Therefore, a more precise stability diagram would require a substantial theoretical
and numerical effort>”, which is beyond the scope of the present work. Nonetheless, the
present work has elucidated two important stabilization mechanisms in detail for the FRC
tilt stability: plasma rotation (due to both ion diamagnetic drift and E x B drift) and ion
gyro-viscosity. The tilt stability observed in past FRC plasmas formed by #-pinches can be
well explained by these two effects due to their large £.

Another important conclusion is that FRC plasmas are always likely to be unstable to
at least one global instability with any combination of s and E. Passive or active stabilizers
(coils or conducting shells) are required to stabilize these global modes completely. Theta-
pinch FRC’s are subject to the axial shift instability, but it seems to be stabilized by mirror
coils. FRC plasmas made by merging spheromaks?® are likely to be subject to the radial
shift instability due to their oblate shape. A conductive shell is probably needed to stabilize
this mode. The global stability of FRC plasmas with both oblate and prolate shapes and

various s can be explored further in the proposed project SPIRIT (Self-organized Plasma
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with Induction, Reconnection, and Injection Techniques)®® based on the counter-helicity

spheromak merging.
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APPENDIX: NUMERICAL CALCULATION OF EXTERNAL FIELDS FOR

SOLOVEYV EQUILIBRIA

A free-boundary solution for the Solovev FRC equilibrium provides external fields for
calculation of the tilt and shift instabilities. To obtain the solution we place NC poloidal
field coils on a closed contour surrounding the plasma and seek a set of coil currents which
match appropriate boundary conditions at the plasma separatrix.

The total flux, ¢, anywhere in space can be written as separate contributions from the
plasma and coil current sources, ¥ = ¥, + ¥.. Axisymmetric Green’s functions relate the

current sources to the fluxes:
(X0 7Z0) = [ [ J(X, 2)G(X, 7 X, Z)aXdz,
where

1
Jo= AT = =X

Here, p' = po/tbo is the derivative of the pressure with respect to the poloidal flux, and is
constant for the Solovev model. Similarly, the “external flux” provided by the poloidal field
coils is given by

NC

V(X Z:) = Y G(X;, Z;; X,, 7).

i=1
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Specifically, the X;, Z; are chosen to be NB equally spaced points on the plasma separa-
trix, excluding X = 0, and the NC coils are equally spaced on (X/Xy)* 4+ (Z/Zy)? = 202, a
contour conformal with the separatrix.

Since ¥ = 0 on the separatrix, matching fluxes across the plasma-vacuum interface gives

NC
ZGi][j = Riv (Al)

J=1

where
R; = _¢p(Xi7Zi)7 Gij = G(XMZZ’XMZ])v 1=1,2

The coil currents, [;, are found by solving Eq.(A1l) by the method of Least Squares:

NB NC NC-1
MIH{W == ZO‘Z' Z Gij[]‘ z:| + Qreg Z ]_|_1 — [ }
=1 7=1

The regularization term multiplying aye, avoids coil-to-coil current oscillation. Typical nu-
merical parameters are NC = 20, NB = 20, o, = 2.0, aye = 0.01. With suitably chosen
weights, o;, maximum errors Max;|(3° G, ;1;)/R; — 1| < 0.005 are typically obtained (see

Figure 1).
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FIGURES

(a) Total flux
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FIG. 1. Solovev’s solution. (a) The internal (external) flux is represented by solid (dotted)
lines. The rectangular box indicates rigid body model. (b) The vacuum flux produced by coils.

The dotted line represents the separatrix.
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FIG. 2. Three rotating axes (X,Y, Z) of the rigid body model.
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FIG. 3. The dimensionless parameters ype and yghife as functions of plasma elongation F.
The lines are fitting functions: g = 0.02F + 0.342 — 0.225/F + 0.0425/E% — 0.00329/F? and

Yshite = —0.0132 — 0.168/FE 4 0.259/E* — 0.0917/E> + 0.0104/ E*.
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FIG. 4. The total J x B torque normalized by 8x (B2 /2u0) R as a function of F.
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FIG. 5. Stability diagram in M (rotation Mach number) and elongation.
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FIG. 6. Stability diagram in s and elongation with stabilizing effect from ion diamagnetic drift.
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(b) After tilt:

FIG. 7. Schematic views of the ion gyro-viscous forces exerted on the FRC plasma: (a) before

tilt, and (b) after tilt. The size of arrows indicates the force stength.
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FIG. 8. Stability diagram in s and elongation with stabilizing effects from ion gyro-viscosity.
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FIG. 9. Stability diagram in s and elongation with stabilizing effects from ion diamagnetic drift

and ion gyro-viscosity.
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FIG. 10. Stability diagram with stabilizing effects from ion diamagnetic drift, ion gyro-viscosity,

and additional rotation: (a) M < 0 and (b) M > 0.
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FIG. 11. (a) The J x B force normalized by £z (Bg/2u0)Rs as a function of F for small axial
shift. (b) Stability diagram for axial shift mode in the parameter space of s and E with ion

gyro-viscosity included.
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FIG. 12. (a) The J x B force normalized by ¢x(BZ/2u0) Rs as a function of F for small radial
shift. (b) Stability diagram for radial shift in the parameter space of s and E with ion gyro-

viscosity included.
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FIG. 13. Comparison of theoretical predictions of tilt stability diagram with experimental

observations of stable FRC plasmas.
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